Муниципальное автономное общеобразовательное учреждение «Средняя шкода №2 г. Пестово»

Рассмотрено Педигогическим советом

Floorescor or 21.06.2022 No.12

Согласовано Заместитель по УР

Евсева М.Г. Дата согласования 21,06,2022

Eli-

Утверждено Приказом директора по МАОУ СШ №2 г. Пестово от 21.06.2022 №158 Егорова М.А.

Финка

(название учебного курса в точном соответствии с учебным планом)

11 класс

(класс, парадлель, в которых изучается программа)

Составители программы: Беляев Борис Герьевич; учитель физики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа разработана на основании «Программы среднего (полного) общего образования. Физика. 11 класс. Базовый уровень. Автор программы В.А. Касьянов и реализуется в учебнике В.А. Касьянова «Физика 11. Базовый уровень».

Модифицированная программа учебного курса соответствует программе В.А. Касьянова и отличается лишь тем, что в соответствие с учебным планом Муниципального автономного общеобразовательного учреждения «Средняя общеобразовательная школа №2 г. Пестово» уменьшено количество часов, отводимых на реализацию программы за счет сокращения практической части.

Общая характеристика учебного предмета, курса 11 класс

№п/п	Наименование	Всего		В том числе:	
	разделов	часов	Проектная	Лабораторные	Контрольные
			деятельность	работы	работы
1	Электродинамика	13	-	-	1
2	Электромагнитное излучение.	12	1	1	2
3.	Физика высоких энергий.	4			
4.	Элементы астрофизики.	3			
5.	Обобщающее повторение.	4			
6.	Итоговое тестирование.	-	-	-	-
Итого		34	1	1	3

Место учебного предмета в учебном плане

Количество ч	насов	В	учебном	плане	В	Согласно	учебному	плану	на	изучение
неделю, в год.					физики от	водится 34	часа из р	расч	ёта 1 час в	
						неделю				

Школьный курс физики — системообразующий для естественнонаучных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.

Особенностями изложения содержания курса являются:

- единство и взаимосвязь всех разделов курса физики;
- отсутствие деления физики на классическую и современную;
- доказательность изложения материала, базирующаяся на простых математических методах и качественных оценках;
 - максимальное использование корректных физических моделей и аналогий;
 - обсуждение границ применимости всех изучаемых закономерностей;
 - использование и возможная интерпретация современных научных данных;
 - рассмотрение принципа действия современных технических устройств;
- общекультурный аспект физического знания, реализация идеи межпредметных связей.

Система заданий, приведенных в учебниках, направлена на формирование:

• готовности и способности к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации;

- способности критически оценивать и интерпретировать информацию, получаемую из различных источников;
- умения самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
- умения применять знания для объяснения окружающих явлений, сохранения здоровья, обеспечения безопасности жизнедеятельности.

Как в содержании учебного материала, так и в методическом аппарате учебников реализуется направленность на формирование у учащихся предметных, метапредметных и личностных результатов, универсальных учебных действий и ключевых компетенций. В учебниках приведены темы проектов, исследовательские задания, задания, направленные на формирование информационных умений учащихся, в том числе при работе с электронными ресурсами и интернет - ресурсами.

Существенное внимание в курсе уделяется вопросам методологии физики и гносеологии (овладению универсальными способами деятельности на примерах выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработке теоретических моделей процессов или явлений).

ЦЕЛИ ИЗУЧЕНИЯ ФИЗИКИ:

• формирование у обучающихся:

- -умения видеть и понимать ценность образования, значимость физического знания для каждого человека, независимо от его профессиональной деятельности;
- -умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок, формулировать и обосновывать собственную позицию;
- -целостного представления о мире и роли физики в создании современной естественнонаучной картины мира;
- -умения объяснять поведение объектов и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого физические знания:

• приобретение обучающимися:

- -опыта разнообразной деятельности, опыта познания и самопознания;
- -ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни

РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА.

Личностными результатами обучения физике в средней (полной) школе являются:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметными результатами обучения физике в средней (полной) школе являются:

• использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;

- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике; использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Предметными результатами обучения физике являются:

- 1) сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- 2) владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- 3) владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
 - 4) сформированность умения решать физические задачи;
- 5) сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- 6) сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

СОДЕРЖАНИЕ КУРСА ФИЗИКИ 11 КЛАССА (34 ч, 1 ч. в неделю).

11 класс (34 ч, 1 ч в неделю)

Электродинамика (23 ч)

Магнитное поле (2ч)

Магнитное взаимодействие. Магнитное поле электрического тока. Линии магнитной индукции. Действие магнитного поля на проводник с током. Сила Ампера. Рамка с током в однородном магнитном поле. Действие магнитного поля на движущиеся заряженные частицы. Сила Лоренца. Масс-спектрограф и циклотрон. Пространственные траектории заряженных частиц в магнитном поле. Магнитные лопушки, радиационные пояса Земли. Взаимодействие электрических токов. Магнитный поток. Энергия магнитного поля тока. Магнитное поле в веществе. Ферромагнетизм.

Электромагнетизм (3 ч)

ЭДС в проводнике, движущемся в магнитном поле. Электромагнитная индукция. Способы получения индукционного тока. Опыты Генри. Использование электромагнитной индукции. Генерирование переменного электрического тока. Передача электроэнергии на расстояние.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

1. Изучение явления электромагнитной индукции.

Механические и электромагнитные колебания (9 ч)

Векторные диаграммы для описания переменных токов и напряжений,. Резистор в цепи переменного тока. Конденсатор в цепи переменного тока. Катушка индуктивности в цепи переменного тока. Свободные гармонические электро-магнитные колебания в колебательном контуре. Колебательный контур в цепи переменного тока. Примесный полупроводник — составная часть элементов схем. Полупроводниковый диод. Транзистор.

Механические и электромагнитные волны (3 ч).

Электромагнитные волны. Распространение электромагнитных волн. Энергия, переносимая электромагнитными волнами. Давление и импульс электромагнитных волн. Спектр электромагнитных волн. Радио- и СВЧ-волны в средствах связи. Радиотелефонная связь, радиовещание.

Оптика (6 ч)

Принцип Гюйгенса. Отражение волн. Преломление волн. Дисперсия света. Построение изображений и хода лучей при преломлении света. Линзы. Собирающие линзы. Изображение предмета в собирающей линзе. Формула тонкой собирающей линзы. Рассеивающие линзы. Изображение предмета в рассеивающей линзе. Фокусное расстояние и оптическая сила системы из двух линз. Человеческий глаз как оптическая система. Оптические приборы, увеличивающие угол зрения.

Интерференция волн. Взаимное усиление и ослабление волн в пространстве. Интерференция света. Дифракция света. Дифракционная решетка.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

2. Наблюдение интерференции и дифракции света.

Квантовая физика и элементы астрофизики (11 ч).

Элементы специальной теории относительности. Фотоны. (3 ч).

Тепловое излучение. Фотоэффект. Корпускулярно-волновой дуализм. Волновые свойства частиц. Строение атома. Теория атома водорода. Поглощение и излучение света атомом. Лазеры. Электрический разряд в газах.

Физика высоких энергий (2 ч)

Физика атомного ядра (4 ч)

Состав атомного ядра. Энергия связи нуклонов в ядре. Естественная радиоактивность. Закон радиоактивного распада. Искусственная радиоактивность. Использование энергии деления ядер. Ядерная энергетика. Термоядерный синтез. Ядерное оружие. Биологическое действие радиоактивных излучений.

Классификация элементарных частиц. Лептоны как фундаментальные частицы. Классификация и структура адронов. Взаимодействие кварков.

Строение Вселенной (2).

Структура Вселенной, ее расширение. Разбегание галактик. Закон Хаббла. Космологическая модель ранней Вселенной. Эра излучения. Нуклеосинтез в ранней Вселенной. Образование астрономических структур. Эволюция звезд и эволюция Солнечной системы. Органическая жизнь во Вселенной.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ КУРСА ФИЗИКИ 11класса.

№п\п	Название темы.	Всего	ЛР	КР	Планируемые предметные результаты
		35	1	4	
1	Электродинамика	13			
	ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК	4			—Давать определения понятиям: электрический ток, постоянный электрический ток, источник тока, сторонние силы, сверхпроводимость, дырка, последовательное и параллельное соединение проводников; физическим величинам: сила тока, ЭДС, сопротивление проводника, мощность электрического тока; —объяснять условия существования электрического тока; —описывать демонстрационный опыт на последовательное и параллельное соединение проводников, тепловое действие электрического тока, передачу мощности от источника к потребителю; самостоятельно проведенный эксперимент по измерению силы тока и напряжения с помощью амперметра и вольтметра; —использовать законы Ома для однородного проводника и замкнутой цепи, закон Джоуля—Ленца для расчета электрических цепей.
	Магнитное поле	2	-	_	-Давать определения понятиям: магнитное взаимодействие. Линии магнитной индукции, однородное магнитное поле, собственная индукция; физическим величинам: вектор магнитной индукции. Вращающий момент, магнитный поток, сила ампера, сила Лоренца, индуктивность контура, индуктивность контура. Магнитная проницаемость среды; - формулировать правило буравчика, принцип суперпозиции магнитных полей, правило левой руки, закон Ампера; - описывать фундаментальные физические опыты Эрстеда и Ампера; - Изучать движение заряженных частиц в магнитном поле; - Исследовать механизм образования и структуру радиационных поясов Земли, прогнозировать и анализировать их влияние на жизнедеятельность в земных условиях.
	Электромагнетизм	7	-	1	-Давать определения понятиям: электромагнитная индукция, индукционный

				ток, самоиндукция, токи замыкания и размыкания, трансформатор; физическим величинам: коэффициент трансформации; - Формулировать закон Фарадея, правило Ленца; - Описывать демонстрационные опыты Фарадея с катушкой и постоянным магнитом, явление электромагнитной индукции; - Приводить примеры использования явления электромагнитной индукции в современной технике: детекторе металла по аэропорту, в поезде на магнитной подушке. Бытовых СВЧ-печах, записи и воспроизведении информации, а также в генераторах переменного тока.
Электромагнитное излучение.	12	1	2	
Излучение и прием электромагнитных волн радио и СВЧ диапазона.	2		1	- Давать определения понятиям: колебательное движение, свободные вынужденные колебания, резонанс; - Описывать механические и электромагнитные колебания.
Волновые свойства света.	6		-	 Давать определения понятиям: волновой процесс, продольная и поперечная механическая волна, длина волны, механическая и электромагнитная волна, плоскополяризованная механическая и электромагнитная волна, плоскость поляризации, фронт волны, луч, радиосвязь, модуляция и демодуляция сигнала; физическим величинам: длина волны, поток энергии, плотность потока энергии электромагнитной волны, интенсивность электромагнитной волны; Объяснять зависимость интенсивности электромагнитной волны от расстояния до источника излучения и его частоты; Описывать механизм давления электромагнитной волны; Классифицировать диапазоны частот спектра электромагнитных излучений
Квантовая теория электромагнитного излучения вещества.	4	1	1	Давать определения понятиям: фотоэффект, работа выхода, фотоэлектроны, фототок, корпускулярно-волновой дуализм, энергетический выход, энергетический уровень. Энергия ионизации, линейчатый спектр, спонтанное и индукционное излучение, лазер, инверсная населенность энергетического уровня, метастабильное состояние; -Называть основные положения волновой теории света, квантовой гипотезы

			Планка; -Формулировать законы фотоэффекта, постулаты бора; -Оценивать длину волны де Бройля, соответствующую движению электрона, кинетическую энергию электрона при фотоэффекте, длину волны света, испускаемого атомом водорода; - Сравнивать излучение лазера с излучением других источников света. Давать определения понятиям: вторичные электромагнитные волны, монохроматическая волна, когерентные волны и источники, просветление оптики; -формулировать принцип Гюйгенса, закон отражения волн, закон преломления; - Объяснять качественно явления отражения и преломления света, явление полного внутреннего отражения; -Описывать демонстрационные эксперименты по наблюдению явлений дисперсии, интерференции и дифракции света; - делать выводы о расположении дифракционных минимумов на экране за освещенной щелью.
Физика высоких энергий.	3		
Физика атомного ядра.	2		Знать/понимать смысл экспериментов, на основе которых была предложена планетарная модель строения атома Знать/понимать сущность квантовых постулатов Бора Знать и уметь описывать и объяснять химическое действие света, назначение и принцип действия квантовых генераторов, лазеров; знать историю русской школы физиков и её вклад в создание и использование лазеров
Элементарные частицы	1	-	- давать определение понятиям: протонно-нейтронная модель ядра, изотопы, радиоактивность, α-распад. β-распад, γ-излучение, искусственная радиоактивность, термоядерный синтез,; физическим величинам: удельная энергия связи, период полураспада, активность радиоактивного вещества, энергетический выход ядерной реакции, коэффициент размножения нейтронов, критическая масса, доза поглощенного излучения; - Объяснять способы обеспечения безопасности ядерных рееакторов и АЭС - Прогнозировать контролируемый естественный радиационный фон, а также

				рациональное природопользование при внедрении УТС
Элементы	3			
Астрофизики.				
Эволюция				
Вселенной.				
Эволюция Вселенной	3			- Давать определения понятиям: астрофизическая структура, планетарная система, звезда, звездное скопление, галактики, звездное скопление, галактики, скопление и сверхскопление галактик, Вселенная, белый карлик, нейтронная звезда, черная дыра, критическая плотность Вселенной; - Интерпретировать результаты наблюдений Хаббла о разбегании галактик; - Классифицировать основные периоды эволюции вселенной после большого взрыва; -представить последовательность образования первичного вещества во Вселенной; - Объяснять процесс эволюции звезд, образования и эволюции Солнечной системы; -С помощью модели Фридмана представить возможные сценарии эволюции вселенной в будущем.
Обобщающее	4			
повторение. Итоговое			1	
тестирование.				
ИТОГ	35	1	4	

СИСТЕМА ОЦЕНКИ ЗНАНИЙ УЧАЩИХСЯ. ФОРМЫ И СРЕДСТВА КОНТРОЛЯ.

Формы организации образовательного процесса:

индивидуальная, парная, групповая, интерактивная.

Методы обучения.

По источнику знаний: словесные, наглядные, практические;

По уровню познавательной активности:

проблемный, частично-поисковый, объяснительно-иллюстративный;

По принципу расчленения или соединения знаний:

аналитический, синтетический, сравнительный, обобщающий, классификационный.

Виды и формы контроля.

Для оценки учебных достижений обучающихся используется:

- текущий контроль в виде проверочных работ и тестов;
- тематический контроль в виде контрольных работ;
- итоговый контроль в виде контрольной работы и теста.
- комплексный зачет (итоговая проверка знаний, включающая проверку теоретического материала и практических навыков);
- проектная работа

Формы и средства контроля.

Основными методами проверки знаний и умений учащихся по физике являются устный опрос, письменные и лабораторные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты. Основные виды проверки знаний — текущая и итоговая. Текущая проверка проводится систематически из урока в урок, а итоговая — по завершении темы (раздела), школьного курса.

Приложение к п.5.

5.1 Оценка устных ответов учащихся

Оценка 5ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующих дальнейшему усвоению программного материала; умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

5.2. Оценка письменных контрольных работ

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

5.3. Оценка лабораторных работ

Оценка 5ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

5.4. Перечень ошибок

І. Грубые ошибки.

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

П. Негрубые ошибки.

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

III. Недочеты.

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.
- 5. Орфографические и пунктуационные ошибки.

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для обучения физике учащихся старших классов необходимо реализовать системно-деятельностный подход к процессу обучения. Данный подход при обучении учащихся физике реализуется при организации экспериментальной деятельности.

Школьный кабинет физики позволяет провести лабораторные работы, предусмотренные программой и имеет необходимые комплекты демонстрационного и лабораторного оборудования в соответствии с перечнем учебного оборудования по физике.

УМК «Физика. 11 класс. Базовый уровень»

- 1. Физика. 11 класс. Базовый уровень. Учебник. В. А. Касьянов
- 2. Физика. 11 класс. Дидактические материалы.А.Е. Марон, Е. А. Марон.М. Дрофа. 2010
- 3. Контрольно-измерительные материалы к учебнику В.А. Касьянова. «Физика 11» М. Вако.2014
- 4. Сборник задач по физике. 10-11 классы. Базовый и профильный уровень. Н.А. Парфентьева. М. «Просвещение» 2007

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебник «Физика. Базовый уровень» В.А. Касьянов. Вертикаль. М. «Дрофа» 2013.

- 1. Программа среднего (полного) общего образования. Физика. 10-11 классы. Базовый уровень. Автор В.А. Касьянов. Рабочие Программы. М. Дрофа. 2014.
- 2. «Физика 10-11 классы. Методическое пособие. Рекомендации по составлению рабочих программ» М. «Дрофа» 2014.
- 3. Сборник задач по физике. 10-11 классы. Базовый и профильный уровень. Н.А. Парфентьева. М. «Просвещение» 2007
- 4. Андрюшечкин С.М. «Конструктор самостоятельных и контрольных работ 10-11классы» М. Просвещение. 2010
- 5. Физика «Методы решения физических задач» Мастерская учителя/ Н. И. Зорин. М. ВАКО. 2007.-334c
- 6. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждениях: Кн. для учителя / В.А. Буров, Ю.И. Дик, Б.С. Зворыкин и др.; под ред. В.А. Бурова, Г.Г. Никифорова. М.: Просвещение: Учеб. лит., 1996. 368 с.
- 7. Контрольные и проверочные работы по физике. 7-11 класс. М. Дрофа.

8. Дифференцированные контрольные работы. 7-11класс. М.; Издательский дом «Сентябрь. 2002

Электронные пособия.

- 1. Сборник демонстрационных опытов для средней общеобразовательной школы
- 2. Электронное пособие. Физика. Библиотека наглядных пособий. 7—11 классы (под редакцией Н. К. Ханнанова).
- 3. «Физика 10», «Физика 11» Видеоролики.
- 4. «Открытая физика»

1. Таблицы общего назначения.

- 1. Междунароная система единиц.
- 2.Приставки для образования десятичных кратных и дольных единиц
- 3. Физические постоянные
- 4. Шкала электромагнитных волн
- 5.Правила техники безопасности при работе в кабинете

Тематические таблицы

- 1. Траектория движения
- 2. Относительность движения
- 3. Второй закон Ньютона
- 4. Реактивное движение
- 5. Космический корабль «Восток»
- 6. Работа силы.
- 7. Взаимосвязь вращательного колебательного движений.
- 8. Динамика свободных колебаний.
- 9. Механические волны.
- 10. Виды деформаций.
- 11. Броуновское движение.
- 12.Поверхностное натяжение. Капиллярность.
- 13. Строение атмосферы Земли.
- 14. Измерение температуры.
- 15. Внутренняя энергия.
- 16. Двигатель внутреннего сгорания.
- 17. Двигатель постоянного тока.
- 18. Агрегатные состояния вещества
- 19. Первое начало термодинамики
- 20. Второе начало термодинамики.
- 21. Работа газа в термодинамике.
- 22. Адиабатный процесс.
- 23. Закон Гей-Люссака.
- 24. Закон Бойля-Мариотта.
- 25. Закон Шарля.

- 26. Цикл Карно.
- 27. Определение скоростей молекул.
- 28. КПД тепловой машины.
- 29. КПД тепловой машины.
- 30. Закон Кулона.
- 31. Электронно-лучевая трубка.
- 32. Полупроводники.
- 33. Полупроводниковый диод.
- 34. Термо- и фоторезистор.
- 35. Простейший радиоприемник.
- 36. Схема гидроэлектростанции.
- 37. Трансформатор.
- 38. Динамик. Микрофон.
- 39 . Модели строения атома.
- 40.Определение заряда электрона.
- 41. Лампа накаливания.
- 42. Давление света.
- 43. Схема опыта Резерфорда.
- 44. Цепная ядерная реакция.
- 45. Лазер.
- 46.Глаз
- 47.Оптические приборы.
- 48.Земля планета солнечной системы.
- 49.Планеты земной группы.
- 50. Строение солнца.

Ка	Календарно-тематическое и поурочное планирование изучения учебного материала для 11 класса.							
Перечень разделов, тем и последовательность их изучения	Количес тво часов на изучени е каждого раздела	Тема урока № урока.	Практическая часть программы	Универсальные учебные действия (к разделу)	Основные виды деятельности обучающихся	Дата проведения.		
	каждой темы							

Тема 1. Электродинамика 13 часов.

Личностные: в ценностно-ориентационной сфере — чувство гордости за российскую физическую науку, гуманизм, положительное отношение труду, целеустремленность;

- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные:

• использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности.

Постоянный	4 ч	1. Техника безопасности	Демонстрации. 1.	Участвовать в	—Систематизируют	
электрический ток.		в кабинете физики.	Условия существования	эвристической беседе;	знания	
		Электрический ток.	электрического тока в	Обмениваться	о физических	
		Сила тока. Источник	проводнике;	знаниями для принятия	величинах: сила тока,	
		тока	2. Измерение напряжений	эффективных решений.	напряжение,	
		в электрической цепи.	различных источников		сопротивление;	
		ЭДС	тока электрометром.		—Объясняют	
					устройство	
					и принцип действия	
					гальванических	
					элементов и других	

2. Закон Ома для однородного проводника (участка цепи) Зависимость удельного сопротивления проводников и полупроводников от	Демонстрация. Зависимость сопротивления металлических проводников от температуры.	Ставить учебную проблему на основе соотнесения того, что уже известно и усвоено, и того, что еще не известно; Анализировать	источников тока; —объясняют действие электрического тока на примере бытовых и технических устройств. —Рассчитывают значение величин, входящих в закон Ома; —объясняют причину возникновения сопротивления в проводниках;
температуры		разбираемый теоретический материал.	—описывают устройство и принцип действия реостата;
3. Соединения проводников Закон Ома для зам-кнутой цепи.	Демонстрации. 1. ЭДС и внутреннее сопротивление источника тока. Закон Ома для полной цепи. 2. Зависимость напряжения на зажимах источника тока от нагрузки; определение внутреннего сопротивления источника		—Исследуют последовательное и параллельное соединение проводников —Рассчитывают ЭДС и внутреннее сопротивление источника тока; —Анализировать зависимость напряжения на зажимах
4. Измерение силы тока и напряжения.	Демонстрации. Подбор шунта к амперметру		источника тока от нагрузки. —Определяют цену деления амперметра и

				1	<u></u>	1
		Тепловое действие	и добавочного		вольтметра;	
		электрического тока. За-	сопротивления к		—измеряют силу тока и	
		кон Джоуля—Ленца	вольтметру.		напряжение на	
					различных участках	
					электрической цепи	
					Вычисляют мощность	
					электрического тока;	
					—приводят примеры	
					тепло	
					вого действия тока	
Магнитное поле	2ч	. 5. Техника		Оформление опорного	участвуют в	
		безопасности в кабинете	Демонстрации	конспекта.	обсуждении изучаемого	
		физики.	магнитного поля тока	Решение задач	материала, выдвигают	
		Сила Ампера. Сила	Закон Ампера. Правило		гипотезы;	
		Лоренца.	левой руки. Модуль		наблюдают и	
			вектора магнитной		описывают опыты;	
			индукции. Единица		работают с опорным	
			магнитной индукции.		конспектом и	
			Демонстрации. 1.		учебником;	
			Вращение проводника с			
			током вокруг магнита.			
			2. Действие магнитного			
			поля на ток			
		6. Магнитные свойства		Решать учебную	Давать определение	
		вещества		проблему;	физических понятий:	
				Анализировать	диамагнетики,	
				разбирать	парамагнетики,	
				теоретический	ферромагнетики;	
				материал;	физических величин:	
				Оформлять ОК	магнитная	
				Составлять план ответа	проницаемость среды;	
					— Анализировать	
					особенности	

Электромагнетизм	7ч	7.Опыты Фарадея. Закон электромагнит-ной индукции «Изучение явления электромагнитной индукции»	Демонстрации. Явление электромагнитной индукции	Выдвигать и обосновывать гипотезы; Наблюдать и анализировать демонстрируемые опыты; Делать выводы.	магнитного поля в веществе. — Наблюдать явление электромагнитной индукций; применять закон электромагнитной индукции для решения задач Формулируют закон электромагнитной индукции;	
		8. Самоиндукция Энергия магнитного поля.	Демонстрации. Самоиндукция при замыкании и размыкании и размыкании цепи	Выдвигать и обосновывают гипотезы, предлагать способы их проверки; Наблюдать и анализировать демонстрируемые опыты; Работать с учебником; Оформлять ОК, используя предложенный план; Воспроизводить материал по плану.	Применяют правило Ленца для определения направления индукционного тока	
		9. Свободные электромагнитные колебания.	Демонстрации. Свободные электрические колебания	Выдвигать и обосновывают гипотезы, предлагать	Давать определение понятия – колебательный контур;	

10. Вынужденные	Демонстрации.	способы их проверки;	— Анализировать
электромагнитные	1. Распределение	Наблюдать и	перераспределение
колебания	напряжений в цепи	анализировать	энергии при
ROJEGATIVA	переменного тока со	демонстрируемые	колебаниях в
	смешанной нагрузкой.	опыты;	колебательном контуре;
	2. Электрический	Работать с учебником;	• •
	-	,	— рассчитывать период собственных
	резонанс	Оформлять ОК,	
		используя	гармонических
		предложенный план;	колебаний
		Воспроизводить	
		материал по плану.	
11 0			07
11.Переменный ток.		Ставить учебную	Объясняют смысл
Мощность переменного		проблему на основе	понятия переменный
тока.		соотнесения того, что	ток и используют
		уже известно и	формулы при решении
		усвоено, и того, что	задач
		еще не известно;	
		Анализировать	
		разбираемый	
		теоретический	
		материал.	
12.Трансформатор.		Оформление опорного	Объясняют назначение,
Автоколебания.		конспекта.	устройство, принцип
Решение задач.		Работа над ОК.	действия и применение
		Решение задач	трансформатора
13.Контрольная работа		Применять	Решают задачи с
на тему		теоретические знания	использованием знаний
«Электромагнетизм».		для решения задач.	по теме
1			«Электромагнетизм».
Torra 2 Dec		(12)	1

Тема 2. Электромагнитное излучение (12 часов)

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труд целеустремленность;
 - в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
 - в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системн информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявлени причинно-следственных связей, поиск аналогов;
 - умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике; использование различнь источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникаци и адресата.

ИЗЛУЧЕНИЕ И	2 ч	14. Электромагнитные	Демонстрации.	Ставить учебную	Излагают физический	
ПРИЕМ		волны. Распространение	Открытый колебательный	проблему на основе	смысл понятий и	
ЭЛЕКТРОМАГНИТН		электромагнитных волн.	контур	соотнесения того, что	величин: «волна»,	
ЫХ ВОЛН		Энергия, переносимая		уже известно и	«длина волны»,	
РАДИО- И СВЧ-		электромагнитны-		усвоено, и того, что	«скорость волны»,	
ДИАПАЗОНА		ми волнами. Давление и		еще не известно;	находят	
		импульс		Анализировать	характеристики волн.	
		электромагнитных волн.		разбираемый		
		15. Спектр	Демонстрации.	теоретический	Изучаютсмысл	
		электромагнитных волн.	Открытый колебательный	материал.	физических законов:	
		Радио- и СВЧ-волны в	контур		теорию Максвелла;	
		средствах связи.			объясняют	
		Радиотелефонная связь,			возникновение и	
		радиовещание.			распространение	
					электромагнитного	
					поля; описывают	
					основные свойства	
					электромагнитных волн	

ВОЛНОВЫЕ	6 ч	16 Cropogri apara	Поможетрании	Анализировати	— Наблюдают
СВОЙСТВА СВЕТА	VЧ	16.Скорость света.	Демонстрации.	Анализировать	' '
CBONCIBA CBETA		Отражение света.	1. Законы преломления	разбираемый материл,	преломление и полное
		Преломление света.	света.	делать выводы;	внутреннее отражение
			2. Полное отражение	Оформлять ОК;	света;
			света.	Решать задачи.	— объясняют
			3. Преломление и		особенности
			полное отражение света в		прохождения света
			призме.		через границу раздела
					сред;
					— сравнивают явления
					отражения света и
					полного внутреннего
					отражения
		17.Линзы.Решение задач.	Демонстрация.	Обмениваться	Производят
			Преломление света в	знаниями для принятия	построения
			линзах	эффективных решений.	изображений в линзах,
					пользуются
					формулами тонкой
					линзы, оптической
					силы линзы.
		18. Дисперсия света.	Демонстрации.	Наблюдать и	Излагают смысл
		Виды спектров	Получение на экране	интерпретировать	явления дисперсия и
		_	сплошного спектра	результаты	объясняют образование
			_	демонстрируемых	сплошного спектра при
				опытов;	дисперсии
				Приводить примеры,	
				доказывающие	
				дисперсию света,	
				проявления данного	
				явления в жизни;	
				Самостоятельно	
				добывать знания из	
				учебника;	

			Составлять план ответа		
			и строить ответ по собственному плану.		
			сооственному плану.		
	19.Интерференция,	Демонстрации.	Наблюдать и	— Наблюдают	
	дифракция и	1. Полосы интерференции	интерпретировать	интерференцию света	
	поляризация света.	от бипризмы Френеля.	результаты	— Наблюдают	
		2. Демонстрация колец	демонстрируемых	дифракцию света на	
		Ньютона.	опытов;	щели и нити;	
		3.Интерференция света в	Приводить примеры,	— определяют условие	
		тонких пленках	доказывающие явления	применимости	
			интерференции,	приближения	
			дифракции,	геометрической оптики	
			поляризации света,	- Формулируют	
			проявления данных	особенности видов	
			явлений в жизни;	излучений по шкале	
			Самостоятельно	электромагнитных	
			добывать знания из	волн.	
			учебника;		
			Составлять план ответа		
			и строить ответ по		
	20 П.б.		собственному плану	<u> </u>	
	20. Лабораторная работа		Структурировать		
	«Наблюдение		знания;		
	интерференции и		Строить речевые		
	дифракции света». Шкала		высказывания в устной и письменной речи;		
			Анализировать		
	электромагнитных излучений.		разбираемый материал,		
	излу топии.		делать выводы;		
			Устанавливают		
			аналогии между		
			механическими и		

	T			1	T T	
				световыми волнами.		
		21.Контрольная работа		Систематизировать	Применяют	
		по теме		полученные знания и	теоретические знания	
		«Электромагнитное		применять их на	для решения задач.	
		излучение».		практике.		
КВАНТОВАЯ	4 ч.	22. Тепловое излучение.	Демонстрации. 1.	Понимают смысл	Формулируют	
ТЕОРИЯ		Фотоэффект.	Внешний фотоэффект.	основных научных	квантовую	
ЭЛЕКТРОМАГНИТН		Корпускулярно-	2. Зависимость	понятий и законов	гипотезу Планка;	
ого излучения		волновой дуализм.	интенсивности внешнего	физики, взаимосвязи	—наблюдают	
И ВЕЩЕСТВА		Волновые свойства	фотоэффекта от величины	между ними;	фотоэлектриче-	
,		частиц.	светового потока и	Проводят анализ	ский эффект;	
		,	частоты света.	способов решения	—измеряют работу	
			3. Законы внешнего	задач с точки зрения их	выхода	
			фотоэффекта	рациональности и	электрона;	
			4. Обнаружение квантов	экономичности;	—рассчитывают	
			света	Выбирают основания и	максималь-	
				критерии для	ную кинетическую	
				сравнения,	энергию	
				сериации и	электронов при	
				классификации	фотоэффекте	
		23. Планетарная		объектов;	Оценивают длину	
		модель атома. Теория		Применяют навыки	волны де Бройля,	
		атома водорода.		организации учебной	соответствующую	
				деятельности,	движению электрона,	
				самоконтроля и оценки	кинетическую энергию	
				результатов своей	электрона при	
				деятельности;	фотоэффекте, длину	
				планируют общие	волны света,	
				способы работы,	испускаемого атомом	
				обмениваются	водорода;	
				знаниями для принятия	—описывают	
				эффективных	принципиальную схему	

	совместных решений	опыта Резерфорда,
		предложившего
		планетарную модель
		атома.
24. Поглощение и		
излучение света атомом.		Описывают принцип
Лазер.		действия лазера;
		—наблюдают <i>излучение</i>
		лазера и его
		воздействие на
		вещество
25.Контрольная работа	Систематизировать	Применяют
на тему	полученные знания и	полученные знания
«Электромагнитное	применять их на	к решению задач.
излучение»	практике.	

Тема 3. Физика высоких энергий 3 ч.

Личностные результаты:

• умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявлени причинно-следственных связей, поиск аналогов.

ФИЗИКА	2 ч.	26. Состав атомного	Демонстрации. 1.	Участвовать в	—Определяют
АТОМНОГО ЯДРА		ядра. Энергия связи	Ионизирующее действие	эвристической беседе;	зарядовое и
		нуклонов в ядре.	радиоактивного	Обмениваться знаниями	массовое число
		Естественная	излучения.	для принятия	различных эле-
		радиоактивность. Закон	2. Наблюдение следов	эффективных решений.	ментов по таблице
		радиоактивного	заряженных частиц		Менделеева
		распада.	в камере Вильсона		—записывают
					уравнения

				ядерных реакций при радиоактивном распаде; —выявляют причины естественной радиоактивности; —определяют период полураспада
		27. Искусственная радиоактивность. Использование энергии деления ядер. Ядерная энергетика. Термоядерный синтез.	Участвовать в эвристической беседе; Обмениваться знаниями для принятия эффективных решений.	радиоактивного элемента. —Анализируют проблемы ядерной безопасности АЭС; —оценивают перспективы раз- вития ядерной энергетики.
ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ	1 ч.	28.Элементарные частицы. Фундаментальные взаимодействия.	Самостоятельно добывать знания из учебника; Составлять план ответа и строить ответ по собственному плану.	—Классифицируют элементарные частицы на фермионы и бозоны, частицы и античастицы. —Подразделяют элементарные частицы на частицы, участвующие в сильном взаимодействии и

		не участвующие в	
		нем.	
		- Характеризуют	
		фундаментальные	
		взаимодействия.	

Тема 4. Элементы астрофизики (3 часа) Эволюция Вселенной.

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труд целеустремленность;
 - в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системнинформационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявлени причинно-следственных связей, поиск аналогов.

Эволюция	3 ч.	29. Структура	Выступать с	—Обсуждают
Вселенной.		Вселенной. Расширение	сообщениями,	образование
		Вселенной. Закон	докладами и	галактик,
		Хаббла.	презентациями	возникновение
				звезд, строение
				звезд различной
				массы.
		30.	Выступать с	—Оценивать
		Образование	сообщениями,	размеры и возраст
		25строномии-	докладами и	Вселенной;
		ческих структур.	презентациями	_
		Эволюция звезд.		классифицировать
				периоды
				эволюции
				Вселенной

		31. Образование Солнечной системы. Эволюция планет земной группы. Эволюция планет-гигантов.			—Объясняют процесс эволюции звезд, образования и эволюции Солнечной системы.
		Обоб	бщающее повторение (4 час	a).	
Повторение материала за курс 11 класса.	3ч	32. 1. Постоянный электрический ток. 2. Магнитное поле. 3. Электромагнетизм.		Участвовать в эвристической беседе; Обмениваться знаниями для принятия эффективных решений. Систематизировать	Анализируют повторяемый материал;работают с таблицей и учебником;
		33. 1. Излучение и прием электромагнитных волн радио- и СВЧ-диапазона. Волновые свойства света. 2. Квантовая теория электромагнитного излучения и вещества. Решение задач.		полученные знания и применять их на практике.	выбирают, сопоставляют, обосновывают способы решения задачрешают задачи - работают поОК;отвечают на вопросы;воспроизводят ОК, анализируя ответ соседа по парте
		34 1. Физика атомного ядра. Элементарные частицы. Решение задач.			Демонстрируют умение применять полученные знания для решения практических

	T			1
	Итоговое тестирование.		задач.	