Муниципальное автономное общеобразовательное учреждение «Средняя школа №2 г. Пестово»

Рассмотрено Педигогическим советом

Протокол от 21.06.2022 №12

Согласовано Заместитель по УР

Charth

Евсеева М.Г. Дата согласования 21.06.2022 Утверждено
Приказом директора
по МАОУ СШ №2
г. Пестово
от 21.06.2022 №158
Егорова М.А.

астрономия

(название учебного курса в точном соответствии с учебным планом)

11 класс

(класс, парадзель, в которых изучается программа)

Составитель программы: Беляев Борис Герьевич; учитель физики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

- 1.1. Программы для общеобразовательных учреждений. Физика. Астрономия. 10-11 класс, Чаругин В.М, Сфера 2017
 - 1.2. Методический комплекс.

Учебно – методический комплект.

- 1. Чаругин В. М. учебник "Астрономия. 10–11 классы. Базовый уровень"
- 2. Астрономия. Методическое пособие 10-11 классы. Базовый уровень: учеб

<u>пособие для учителей общеобразоват. организаций. — М.: Просвещение, 2017, под</u> ред. В.М. Чаругина

Выбор данной авторской программы и учебно-методического комплекса обусловлен уровнем учебных способностей обучающихся школы, запросом родителей на образование, соответствие данной программы требованиям ФГОС среднего общего образования, Федеральному перечню учебников РФ (приказ МО РФ №253 от 30.03.2014года; приказ МО РФ № 506 от 07.06.2017года.) Программа составлена в соответствии с изменениями, внесенными в Федеральный государственный образовательный стандарта среднего общего образования.

Контрольно – измерительные материалы, направленные на изучение уровня:

знаний основ астрономии (монологический ответ, экспресс – опрос, фронтальный опрос, тестовый опрос, написание и защита сообщения по заданной теме, объяснение эксперимента, астрономический диктант)

приобретенных навыков самостоятельной и практической деятельности учащихся (в ходе решения задач)

развитых свойств личности: творческих способностей, интереса к изучению астрономии, самостоятельности, коммуникативности, критичности, рефлексии.

Используемые технические средства.

- 1. Персональный компьютер
- 2. Мультимедийный проектор

Оборудование, используемое при выполнении практических работ по астрономии

- 1.Подвижная карта звездного неба.
- 2. Модель небесной сферы.
- 3. Телескоп.
- 1.3. Программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения разделов астрономии с учетом межпредметных и внугрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, практических работ, выполняемых обучающимися. Программа соответствует образовательному минимуму содержания основных образовательных программ и требованиям к уровню подготовки учащихся, позволяет работать без перегрузок в классе с детьми разного уровня обучения и интереса к астрономии.

В рабочую программу в соответствие с содержанием учебника внесены следующие изменения:

- 1.4. Уровень усвоения программы: общеобразовательный.
- 1.5.Основные формы, технологии, методы обучения; типы уроков.

Основная форма организации учебного процесса – урок.

Используемые технологии: здоровьесбережения, проблемного обучения, педагогика сотрудничества, развития исследовательских навыков, дифференцированного подхода в обучении развития творческих способностей.

Типы построения уроков: Урок открытия нового знания, урок постановки учебной задачи, урок решения учебной задачи, урок решения частных задач, урок контроля, урок систематизации и обобщения, урок тренинг и т.д.

1.6.Основные формы контроля и оценки.

Виды и формы контроля:

Вид контроля	Форма контроля
устный	индивидуальный опрос
	фронтальный опрос
письменный	астрономический диктант
	контрольная работа
	самостоятельная работа
	тест
	конспект
	решение задач
практический	практическая работа
	фронтальный эксперимент
графический	таблица
наблюдение	
самоконтроль	

ОЦЕНКА ОТВЕТОВ УЧАЩИХСЯ

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение астрономических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу астрономии, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «З» ставиться, если учащийся правильно понимает сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса астрономии, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

ОЦЕНКА ПИСЬМЕННЫХ РАБОТ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «**4**» ставится за работу, выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «**3**» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и.двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Перечень ошибок:

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения астрономических величин, единицу измерения.
 - 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения астрономических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
 - 4. Неумение читать и строить графики и принципиальные схемы
 - 5. Небрежное отношение к оборудованию и измерительным приборам.
 - 6. Неумение определить показания измерительного прибора.

Негрубые ошибки

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц астрономических величин.
 - 4. Нерациональный выбор хода решения.

<u>Недочеты</u>

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
 - 3. Отдельные погрешности в формулировке вопроса или ответа.
 - 4. Небрежное выполнение записей, чертежей, схем, графиков.
 - 5. Орфографические и пунктуационные ошибки

ЦЕЛИ И ЗАДАЧИ ПРЕДМЕТА.

При изучении основ современной астрономической науки перед учащимися ставятся следующие **пели**:

- понять сущность повседневно наблюдаемых и редких астрономических явлений;
- познакомиться с научными методами и историей изучения Вселенной;
- получить представление о действии во Вселенной физических законов, открытых в земных условиях, и единстве мегамира и микромира;
 - осознать свое место в Солнечной системе и Галактике;
 - ощутить связь своего существования со всей историей эволюции Метагалактики;
- выработать сознательное отношение к активно внедряемой в нашу жизнь астрологии и другим оккультным (эзотерическим) наукам.

Главная задача курса — дать учащимся целостное представление о строении и эволюции Вселенной, раскрыть перед ними астрономическую картину мира XX в. Отсюда следует, что основной упор при изучении астрономии должен быть сделан на вопросы астрофизики, внегалактической астрономии, космогонии и космологии.

Реализация рабочей программы направлена на достижение следующих целей:

Введение в астрономию (2 ч)

Цель изучения данной темы — познакомить учащихся с основнымиастрономическими объектами, заполняющими Вселенную: планетами, Солнцем, звёздами, звёздными скоплениями, галактиками,

скоплениями галактик; физическими процессами, протекающими вних и в окружающем их пространстве. Учащиеся знакомятся схарактерными масштабами, характеризующими свойства этих

небесных тел. Также приводятся сведения о современных оптических, инфракрасных, радио-, рентгеновских телескопах и обсерваториях.

Таким образом, учащиеся знакомятся с теми небесными телами и объектами, которые они в дальнейшем будут подробно изучать науроках астрономии.

Астрометрия (5 ч)

Целью изучения данной темы — формирование у учащихся о видезвёздного неба, разбиении его на созвездия, интересных объектах всозвездиях и мифологии созвездий, развитии астрономии в античные

времена. Задача учащихся проследить, как переход от ориентации посозвездиям к использованию небесных координат позволил вколичественном отношении изучать видимые движения тел. Также

целью является изучение видимого движения Солнца, Луны и планети на основе этого — получение представления о том, как астрономынаучились предсказывать затмения; получения представления об

одной из основных задач астрономии с древнейших времён — измерении времени и ведении календаря.

Небесная механика (4 ч)

Цель изучения темы — развитее представлений о строении Солнечнойсистемы: геоцентрическая и гелиоцентрические системы мира; законыКеплера о движении планет и их обобщение Ньютоном; космическиескорости и межпланетные перелёты.

Строение Солнечной системы (7 ч)

Цель изучения темы — получить представление о строении Солнечнойсистемы, изучить физическую природу Земли и Луны, явленияприливов и прецессии; понять физические особенности строения

планет земной группы, планет-гигантов и планет-карликов; узнать обособенностях природы и движения астероидов, получить общиепредставления о кометах, метеорах и метеоритах; узнать о развитии

взглядов на происхождение Солнечной системы и о современныхпредставлениях о её происхождении.

Астрофизика и звёздная астрономия (9 ч)

Цель изучения темы — получить представление о разных типахоптических телескопов, радиотелескопах и методах наблюдений сих помощью; о методах и результатах наблюдений Солнца, его

основных характеристиках; о проявлениях солнечной активности исвязанных с ней процессах на Земле и в биосфере; о том, какастрономы узнали о внутреннем строении Солнца и какнаблюдения солнечных нейтрино подтвердили нашипредставления о процессах внутри Солнца; получитьпредставление: об основных характеристиках звёзд, ихвзаимосвязи, внутреннем строении звёзд различных типов, понять

природу белых карликов, нейтронных звёзд и чёрных дыр, узнатькак двойные звёзды помогают определить массы звёзд, апульсирующие звёзды — расстояния во Вселенной; получитыпредставление о новых и сверхновых звёздах, узнать, как живут иумирают звёзды.

Млечный Путь – наша Галактика (3 ч)

Цель изучение темы — получить представление о нашей Галактике — Млечном Пути, об объектах, её составляющих, о распределении газа ипыли в ней, рассеянных и шаровых скоплениях, о её спиральной

структуре; об исследовании её центральных областей, скрытых от нассильным поглощением газом и пылью, а также о сверхмассивнойчёрной дыре, расположенной в самом центре Галактики.

Галактики (3 ч)

Цель изучения темы — получить представление о различных типахгалактик, об определении расстояний до них по наблюдениямкрасного смещения линий в их спектрах, и о законе Хаббла; овращении галактик и скрытой тёмной массы в них; получитьпредставление об активных галактиках и квазарах и о физическихпроцессах, протекающих в них, о распределении галактик и ихскоплений во Вселенной, о горячем межгалактическом газе, заполняющим скопления галактик.

Строение и эволюция Вселенной (3 ч)

Цель изучения темы — получить представление об уникальномобъекте — Вселенной в целом, узнать, как решается вопрос оконечности или бесконечности Вселенной, о парадоксах, связанных сэтим, о теоретических положениях общей теории относительности, лежащих в основе построения космологических моделей Вселенной; узнать какие наблюдения привели к созданию расширяющейся

модели Вселенной, о радиусе и возрасте Вселенной, о высокойтемпературе вещества в начальные периоды жизни Вселенной и оприроде реликтового излучения, о современных наблюдениях

ускоренного расширения Вселенной.

Современные проблемы астрономии (3 ч)

Цель изучения данной темы — показать современные направленияизучения Вселенной, рассказать о возможности определениярасстояний до галактик с помощью наблюдений сверхновых звёзд и

об открытии ускоренного расширения Вселенной, о роли тёмнойэнергии и силы всемирного отталкивания; учащиеся получат представление об экзопланетах и поиске экзопланет, благоприятных

для жизни; о возможном числе высокоразвитых цивилизаций в нашей Галактике, о методах поисках жизни и внеземных цивилизаций ипроблемах связи с ними.

- 1.8. Цель обучения: Создание условий для достижения результатов, предусмотренных $\Phi\Gamma$ OC.
 - 1.9.Задачи обучения.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА, КУРСА

№п/п	Наименование	Всего		В том числе:	
	разделов	часов	Проектная	Практические	Контрольные
			деятельность	работы	работы
1	Введение в астрономию	1	-	-	-
2	Астрометрия	5	-	1	1
3	Небесная				
	механика				
		3	-	-	1
4	Строение	7	1	1	1
	Солнечной				
	системы				
5	Астрофизика и	7	1	-	1
	звёздная				
	астрономия	2		1	
6	Млечный Путь –	3	-	1	-
7	наша Галактика Галактики	3			1
8	Строение и	3	<u>-</u>	_	1
0	эволюция	3	-	_	1
	Вселенной				
9	Современные	3	1	-	-
	проблемы				
	астрономии				
Итого		35	3	3	6

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Количество часов в учебном плане в	Согласно учебному плану на изучение
неделю, в год.	курса астрономии 11 класса отводится
	35часов из расчёта 1часа в неделю

Ценностные ориентиры содержания предмета

Астрономия занимает особое место в системе естественнонаучных знаний, так как она затрагивает глубинные вопросысуществования человека в окружающем мире и в нейконцентрируются основные противоречия между бытием человека иего сознанием. На протяжении тысячелетий астрономия шагала в ногус философией и религией, информацией, почерпнутой из наблюденийзвёздного неба, питала внутренний мир человека, его религиозныепредставления об окружающем мире. Во всех древних философскихшколах астрономия занимала ведущее место. Так как астрономия незатрагивала непосредственно условия жизни и деятельности человека, то потребность в ней возникала на более высоком уровне умственногои духовного развития человека, и поэтому, она была доступна

пониманию узкого круга образованных людей.Всё современное естествознание: физика, математика, географияи другие науки — питалось и развивалось благодаря

развитию астрономии. Достаточно вспомнить механику, математический анализ, развитые Ньютоном и его последователями в основном для

объяснения движения небесных тел. Современные идеи и теории:общая теория относительности, физика элементарных частиц — вомногом зиждутся на достижениях современной астрономии, таких её

разделов, как астрофизика и космология. Чтобы правильно понять современное естествознание,

необходимо изучать астрономию, пронизывающую его и лежащую вего основах. Основными задачами курса являются:

- освоение знаний об астрономических величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения астрономических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения астрономических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении астрономических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к астрономии как элементу общечеловеческой культуры;
- использование полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Содержание КУП

Примерная программа по предмету включает в себя следующее содержание.

Введение в астрономию

Строение и масштабы Вселенной, и современные наблюдения. Какие тела заполняют Вселенную. Каковы их характерные размеры ирасстояния между ними. Какие физические условия встречаются вних. Вселенная расширяется. Где и как работают самые крупные оптические телескопы. Какастрономы исследуют гамма-излучение Вселенной. Что увиделигравитационно-волновые и нейтринные телескопы.

Астрометрия

Звёздное небо и видимое движение небесных светилКакие звёзды входят в созвездия Ориона и Лебедя. Солнце движетсяпо эклиптике. Планеты совершают петлеобразное движение.

Небесные координаты

Что такое небесный экватор и небесный меридиан. Как строятэкваториальную систему небесных координат. Как строятторизонтальную систему небесных координат.Видимое движение планет и СолнцаПетлеобразное движение планет, попятное и прямое движение планет.Эклиптика, зодиакальные созвездия. Неравномерное движениеСолнца по эклиптике.Движение Луны и затменияФазы Луны и синодический

месяц, условия наступления солнечного илунного затмений. Почему происходят солнечные затмения. Сарос ипредсказания затмений

Время и календарь

Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы ихсогласования Юлианский и григорианский календари.

Небесная механика

Гелиоцентрическая система мира

Представления о строении Солнечной системы в античные времена ив средневековье. Гелиоцентрическая система мира, доказательствовращения Земли вокруг Солнца. Параллакс звёзд и определениерасстояния до них, парсек.

Законы Кеплера

Открытие И.Кеплером законов движения планет. Открытие законаВсемирного тяготения и обобщённые законы Кеплера. Определениемасс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физическийсмысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты

Понятие оптимальной траектории полёта к планете. Время полёта кпланете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие междуЛуной и Землёй. Удаление Луны от Земли и замедление вращенияЗемли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты гиганты, их принципиальные различия. Облако комет Оорта и ПоясКойпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Рольпарникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Какпарниковый эффект греет поверхность Земли и перегреваетатмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит

спутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна.

Вулканическая деятельность на спутнике Юпитера Ио. Природа колецвокруг планет-гигантов.

Планеты-карлики и их свойства. Малые тела Солнечной системы

Природа и движение астероидов. Специфика движения группастероидов Троянцев и Греков. Природа и движение комет. ПоясКойпера и Облако комет Оорта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связьмежду метеорными потоками и кометами. Природа каменных ижелезных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температурыи химического состава Солнца. Строение солнечной атмосферы.

Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца

Теоретический расчёт температуры в центре Солнца. Ядерныйисточник энергии и термоядерные реакции синтеза гелия из водорода,перенос энергии из центра Солнца наружу, конвективная зона.

Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзлы

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости,температуры и химического состава. Спектральная классификациязвёзд и её физические основы. Диаграмма «спектральный класс» —

светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дырыСтроение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и

их параметры.

Двойные, кратные и переменные звёздыНаблюдения двойных и кратных звёзд. Затменно-переменные звёзды.Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью ипериодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, покоторым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды

Характеристики вспышек новых звёзд. Связь новых звёзд с теснымидвойными системами, содержащими звезду белый карлик.Перетекание вещества и ядерный взрыв на поверхности белого

карлика. Как взрываются сверхновые звёзды. Характеристикивспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышкасверхновой первого типа. Взрыв массивной звезды в конце своейэволюции — взрыв сверхновой второго типа. Наблюдение остатковвзрывов сверхновых звёзд.

Эволюция звёзд: рождение, жизнь и смерть звёздРасчёт продолжительности жизни звёзд разной массы на главнойпоследовательности. Переход в красные гиганты и сверхгигантыпосле исчерпания водорода. Спокойная эволюция мало-массивныхзвёзд, и гравитационный коллапс и взрыв с образованием нейтроннойзвезды или чёрной дыры массивной звезды. Определение возрастазвёздных скоплений и отдельных звёзд и проверка теории эволюциизвёзд.

Млечный Путь

Газ и пыль в Галактике

Как образуются отражательные туманности. Почему светятсядиффузные туманности Как концентрируются газовые и пылевые туманности в Галактике. Рассеянные и

Как концентрируются газовые и пылевые туманности в Галактике. Рассеянные и шаровые звёздные скопления Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределениеи характер движения скоплений в Галактике. Распределение звёзд,

скоплений, газа и пыли в Галактике.

Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики иобнаружение в центре Галактики сверхмассивной черной дыры.

Расчёт параметров сверхмассивной чёрной дыры. Наблюдениякосмических лучей и их связь со взрывами сверхновых звёзд.

Галактики

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение

расстояния до них.

Закон Хаббла

Вращение галактик и тёмная материя в них. Активные галактики и квазарыПрирода активности галактик, радиогалактики и взаимодействующиегалактики. Необычные свойства квазаров, их связь с ядрами галактики активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массытёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной — парадоксыклассической космологии.

Закон всемирного тяготения и представления о конечности ибесконечности Вселенной. Фотометрический парадокс ипротиворечия между классическими представлениями о строении

Вселенной и наблюдениями. Необходимость привлечения общейтеории относительности для построения модели Вселенной. Связьмежду геометрических свойств пространства Вселенной с

распределением и движением материи в ней.

Расширяющаяся Вселенная

Связь средней плотности материи с законом расширения игеометрическими свойствами Вселенной. Евклидова и неевклидовагеометрия Вселенной. Определение радиуса и возраста Вселенной.

Модель «горячей Вселенной» и реликтовое излучения Образование химических элементов во Вселенной. Обилие гелия воВселенной и необходимость образования его на ранних этапахэволюции Вселенной. Необходимость не только высокой плотностивещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение — излучение, которое осталось воВселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтовогоизлучения. Почему необходимо привлечение общей теорииотносительности для построения модели Вселенной.

Современные проблемы астрономии

Ускоренное расширение Вселенной и тёмная энергияНаблюдения сверхновых звёзд I типа в далёких галактиках и открытиеускоренного расширения Вселенной. Открытие силы всемирногоотталкивания. Тёмная энергия увеличивает массу Вселенной по мерееё расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимыхспутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях

экзопланет. Поиск экзопланет с комфортными условиями для жизнина них.

Поиски жизни и разума во Вселенной

Развитие представлений о возникновении и существовании жизни воВселенной. Современные оценки количества высокоразвитыхцивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

	Количес	Тема урока	Практи-	Универсальные учебные действия (к разделу)	Основные виды	Дата
Перечен	ТВО		ческая часть		деятельности	прове-
Ь	часов на		программы.		обучающихся.	дения
раздело	изучени					
в, тем и	e					
последо	каждого					
вательн	раздела					
ость их	И					
изучени	каждой					
Я	темы					
№ урока						

Введение 1 ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач;

Предметные результаты:

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;

1.	. Введение в астрономию	Знать/понимать:	Наблюдать и описывать	
		- что изучает астрономия;	астрономические явления.	
		- роль наблюдений в астрономии;	Высказывать	
		- значение астрономии;	предположения и	
		- что такое Вселенная;	гипотезы.	
		- структуру и масштабы		
		Вселенной		

Астрометрия 5 ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- самостоятельность в приобретении новых знаний и практических умений;

- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости междявлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

2.	Звездное небо.	Работа с	Знать/понимать: - что такое созвездие;	Наблюдать и описывать	
3.	Небесные координаты.	картой	- названия некоторых созвездий,	астрономические явления.	
	Практическая работа	звездного	их конфигурацию, альфу каждого	- использовать	
	«Работа с картой	неба.	из этих созвездий;	подвижную	
	звездного неба».		- основные точки, линии и круги	звёздную карту для	
4.	Видимое движение	1	на небесной сфере:	решения	
	планет и		- горизонт,	следующих задач:	
	Солнца		- полуденная линия,	а) определять координаты	
5.	Движение Луны и	1	- небесный меридиан,	звёзд, нанесённых на	
	затмения		- небесный экватор,	карту;	
6.	Время и календарь.	1	- эклиптика,	б) по заданным	
	Контрольное		- зенит,	координатам объектов	
	тестирование по теме		- полюс мира,	(Солнце, Луна, планеты)	
	«Астрометрия».		- ось мира,	наносить их положение на	

- точки равноденствий и	карту;
солнцестояний;	в) устанавливать карту на
- теорему о высоте полюса мира	любую дату и время
над горизонтом;	суток,
- основные понятия сферической	ориентировать её и
и практической астрономии	определять условия
-кульминация и высота	видимости светил.
светила над горизонтом;	- решать задачи на связь
-прямое восхождение и	высоты
склонение;	светила в кульминации с
- сутки;	географической широтой
- отличие между новым и	места
старым стилями;	наблюдения;
- величины:	- определять высоту
- угловые размеры Луны и	светила в
Солнца;	кульминации и его
- даты равноденствий и	склонение;
солнцестояний;	- географическую высоту
- угол наклона эклиптики к	места
экватору;	наблюдения;
- соотношения между мерами	- рисовать чертёж в
и мерами времени для	соответствии
измерения углов;	с условиями задачи;
- продолжительность года;	- осуществлять переход к
- число звёзд, видимых	разным
невооружённым взглядом;	системам счета времени.
- принципы определения	- находить стороны света
географической широты и	ПО
долготы по астрономическим	Полярной звезде и
наблюдениям;	полуденному
- причины и характер видимого	Солнцу;
движения звезд и Солнца, а	- отыскивать на небе
также годичного движения Солнца	следующие
	созвездия и наиболее

		=	i	
				яркие
				звёзды в них:
				- Большую Медведицу,
				- Малую Медведицу (с
				Полярной звездой),
				- Кассиопею,
				- Лиру (с Вегой),
				- Орёл (с Альтаиром),
				- Лебедь (с Денебом),
				- Возничий (с Капеллой),
				- Волопас (с Арктуром),
				- Северную корону,
				- Орион (с Бетельгейзе),
				- Телец (с Альдебараном),
				- Большой Пёс (c
				Сириусом)
		•	Небесная механика (3 ч)	
7.	Система мира.	Решение	Знать/понимать: - понятия:	- применять законы
8.	Законы Кеплера	расчетных	- гелиоцентрическая система	Кеплера и
	движения планет.	задач.	мира;	закон всемирного
9.	Космические скорости и	† '`	- геоцентрическая система	тяготения при
'	межпланетные перелёты		мира;	объяснении движения
	Самостоятельная работа		- синодический период;	планет и
	по решению задач.		- звёздный период;	космических аппаратов;
	по решенино зада н		- горизонтальный параллакс;	- решать задачи на расчёт
			- угловые размеры светил;	расстояний по известному
			- первая космическая	параллаксу (и наоборот),
			скорость;	линейных и угловых
			- вторая космическая	размеров
			скорость;	небесных тел, расстояний
			- способы определения размеров	планет
			и массы Земли;	от Солнца и периодов их
			- способы определения	обращения по третьему
			расстояний до небесных тел и их	закону
		<u> </u>	[I 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	J

масс по закону Кеплера; - законы Кеплера и их связь с законом тяготения	Кеплера
---	---------

Строение Солнечной системы 7 ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;

Метапредметные результаты:

- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости междивлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

ſ	10.	Современные	Работа с	Знать/понимать: - происхождение Солнечной	пользоваться планом	
		представления о	астрономиче	системы;	Солнечной системы и	
		строении и составе	ским	- основные закономерности в	справочными данными;	
		Солнечной	календарем.	Солнечной системе;	- определять по	

	системы	Решение	- космогонические гипотезы;	астрономическому	
11.	Планета Земля.	задач.	- система Земля–Луна;	календарю,	
12.	Луна и её влияние на]	- основные движения Земли;	какие планеты и в каких	_
	Землю		- форма Земли;	созвездиях видны на небе	
13.	Планеты Земной группы.	1	- природа Луны;	В	
14.	Планеты-гиганты.		- общая характеристика планет	данное время;	
	Планеты-		земной группы (атмосфера,	-находить планеты на	
	карлики		поверхность);	небе,	
15.	Малые тела Солнечной	1	- общая характеристика планет-	отличая их от звёзд;	
	Системы.		гигантов (атмосфера;	- применять законы	
	Практическая работа		поверхность);	Кеплера и	
	«Изучение Солнечной		- спутники и кольца планет-	закон всемирного	
	системы с		гигантов;	тяготения при	
	использованием		- астероиды и метеориты;	объяснении движения	
	справочных материалов»		- пояс астероидов;	планет и	
16.	Современные	1	- кометы и метеоры	космических аппаратов;	
	представления о			- решать задачи на расчёт	
	происхождении			расстояний по известному	
	Солнечной			параллаксу (и наоборот),	
	системы			линейных и угловых	
	Контрольное			размеров	
	тестирование по теме			небесных тел, расстояний	
	«Солнечная система».			планет	
	"Cosmic man energya".			от Солнца и периодов их	
				обращения по третьему	
				закону	
				Кеплера	

Астрофизика и звездная астрономия 7 ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
 убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

Метапредметные результаты:

- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационны технологий для решения поставленных задач;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости меж, явлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по астрономии на практике, решать задачи на применение полученных знаний;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

17.	Методы	Работа с	Знать/понимать:	- применять основные	
	астрофизических	телескопом.	- основные физические	положения	
	исследований	Решение	характеристики Солнца:	ведущих физических	
18.	Солнце.	задач.	- масса,	теорий при	
19.	Внутреннее строение и		- размеры,	объяснении природы	
20.	источник		- температура;	Солнца и	
21.	энергии Солнца		- схему строения Солнца и	звёзд;	
	Основные		физические процессы,	- решать задачи на расчёт	
	характеристики звезд.		происходящие в его недрах и	расстояний до звёзд по	
	Белые карлики,		атмосфере;	известному годичному	
	нейтронные		- основные проявления	параллаксу и обратные, на	

	звёзды, чёрные дыры.	солнечной активности, их	сравнение различных
	Двойные,	причины, периодичность и	звёзд по
	кратные и переменные	влияние на Землю;	светимостям, размерам и
	звёзды	- основные характеристики звёзд	температурам;
22.	Новые и сверхновые	в сравнении с Солнцем:	- анализировать
	звезды.	- спектры,	диаграммы
23.	Эволюция звезд.	- температуры,	«спектр-светимость» и
	Контрольная работа на	- светимости;	«Macca—
	тему «Астрофизика и	- пульсирующие и взрывающиеся	светимость»;
	звездная астрономия».	звезд;	- находить на небе звёзды:
		- порядок расстояния до звёзд,	- альфы Малой
		способы определения и размеров	Медведицы,
		звёзд;	- альфы Лиры,
		- единицы измерения расстояний:	- альфы Лебедя,
		- парсек,	- альфы Орла,
		- световой год;	- альфы Ориона,
		- важнейшие закономерности	- альфы Близнецов,
		мира звёзд;	- альфы Возничего,
		- диаграммы «спектр-	- альфы Малого Пса,
		светимость» и «масса-	- альфы Большого Пса,
		светимость»;	- альфы Тельца
		- способ определения масс	
		двойных звёзд;	
		- основные параметры состояния	
		звёздного вещества:	
		- плотность,	
		- температура,	
		- химический состав,	
		- физическое состояние;	
		- важнейшие понятия:	
		- годичный параллакс,	
		- светимость,	
		- абсолютная звёздная	
		величина;	

	- устройство и назначение	ſ	
	телескопа;		•
	- устройство и назначение		,
	рефракторов и рефлекторов		1

Млечный путь 3ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационны технологий для решения поставленных задач;

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости меж, явлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

L						
	24.	Газ и пыль в галактике.	Работа с	Знать/понимать:	- объяснять причины	
	25.	Рассеянные и шаровые	таблицами и	- понятие туманности;	различия	
		звёздные	графиками.	- основные физические	видимого и истинного	
		Скопления		параметры, химический состав и	распределения звёзд,	
		Практическая работа с		распределение межзвёздного	межзвёздного вещества и	

	использованием	вещества в Галактике;	галактик на небе;
	справочных материалов	- примерные значения	- находить расстояния
	«Строение Галактики»	следующих величин:	между
26.	Сверхмассивная чёрная	- расстояния между звёздами	звёздами в окрестности
	дыра в	в окрестности Солнца, их	Солнца,
	центре Млечного Пути	число в Галактике, её	их число в Галактике, её
		размеры,	размеры;
		- инфракрасный телескоп;	- оценивать массу и
		- оценка массы и размеров	размер
		чёрной дыры по движению	чёрной дыры по
		отдельных звёзд.	движению
			отдельных звёзд

Галактики 3 ч.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;

Метапредметные результаты:

- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

- умения применять теоретические знания по астрономии на практике, решать задачи на применение полученных знаний;
- Умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования устанавливать факты, различать причины и следствия, строить модели и выдвигать

27.	Классификация галактик.	Работа с таблицами и	Знать/понимать: - основные физические	- объяснять причины различия
28.	Активные галактики и квазары	графиками.	параметры, химический состав и распределение межзвёздного	видимого и истинного распределения звёзд,
29.	Скопления галактик. Контрольное тестирование на тему «Галактики».		вещества в Галактике; - примерные значения следующих величин: - основные типы галактик, различия между ними; - примерное значение и физический смысл постоянной Хаббла; - возраст наблюдаемых небесных тел	межзвёздного вещества и галактик на небе

Строение и эволюция Вселенной 3 ч.

Личностные результаты:

- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения. Метапредметные результаты:
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости меж, явлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- Умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, рационального природопользования и охраны окружающей среды;

- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, выводить из экспериментальных фактов и теоретических моделей законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

30.	Конечность и	Знать/понимать:	- использовать знания по
	бесконечность	- связь закона всемирного	физике
	Вселенной.	тяготения с представлениями о	и астрономии для
	Расширяющаяся	конечности и бесконечности	описания и
	Вселенная	Вселенной;	объяснения современной
31.	Модель «горячей	- что такое фотометрический	научной картины мира
	Вселенной» и	парадокс;	
	реликтовое излучение	- необходимость общей теории	
		относительности для построения	
		модели Вселенной;	
		- понятие «горячая Вселенная»;	
		- крупномасштабную структуру	
		Вселенной;	
		- что такое метагалактика;	
		- космологические модели	
		Вселенной	
32.	Итоговое тестирование		
	за курс астрономии 11		
	класса.		

Современные проблемы астрономии (3 ч)

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, выводить из экспериментальных фактов и теоретических моделей законы;
 коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы.
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

33.	Ускоренное расширение	Работа с	Знать/понимать:	- использовать знания,	
	Вселенной и тёмная	источниками	- какие наблюдения подтвердили	полученные по физике и	
	энергия	информации	теорию ускоренного расширения	астрономии, для описания	
34.	Обнаружение планет].	Вселенной;	И	
	возле		- что исследователи понимают	объяснения современной	
	других звёзд		под тёмной энергией;	научной картины мира;	
35.	Поиск жизни и разума во		- зачем в уравнение Эйнштейна	- обосновывать свою	
	Вселенной		была введена космологическая	точку	
			постоянная;	зрения о возможности	
			- условия возникновения планет	существования внеземных	
			около звёзд;	цивилизаций и их	
			- методы обнаружения	контактов с	
			экзопланет около других звёзд;	нами	
			- об эволюции Вселенной и		
			жизни во Вселенной;		
			- проблемы поиска внеземных		
			цивилизаций;		

	- формула Дрейка	
Итого: 35 часов.		

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ АСТРОНОМИИ

Планируемые результаты освоения учебного предмета по итогамобучения в 10–11 классах:

• Получить представления о структуре и масштабах Вселенной иместе человека в ней. Узнать о средствах, которые используютастрономы, чтобы заглянуть в самые удалённые уголки Вселенной и

не только увидеть небесные тела в недоступных с Земли диапазонахдлин волн электромагнитного излучения, но и узнать о новых каналахполучения информации о небесных телах с помощью нейтринных игравитационно-волновых телескопов.

• Узнать о наблюдаемом сложном движении планет, Луны иСолнца, их интерпретации. Какую роль играли наблюдения затмений

Луны и Солнца в жизни общества и история их научного объяснения.

Как на основе астрономических явлений люди научились измерятьвремя и вести календарь.

• Узнать, как благодаря развитию астрономии люди перешли отпредставления геоцентрической системы мира к революционнымпредставлениям гелиоцентрической системы мира. Как на основе

последней были открыты законы, управляющие движением планет, и познее, закон всемирного тяготения.

• На примере использования закона всемирного тяготенияполучить представления о космических скоростях, на основе которыхрассчитываются траектории полётов космических аппаратов к

планетам. Узнать, как проявляет себя всемирное тяготение наявлениях в системе Земля—Луна, и эволюцию этой системы вбудущем.

• Узнать о современном представлении, о строении Солнечнойсистемы, о строении Земли как планеты и природе парниковогоэффекта, о свойствах планет земной группы и планет-гигантов и об

исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.

- Получить представление о методах астрофизических исследований и законах физики, которые используются для изученияфизически свойств небесных тел.
- Узнать природу Солнца и его активности, как солнечнаяактивность влияет на климат и биосферу Земли, как на основе законовфизики можно рассчитать внутреннее строение Солнца и как

наблюдения за потоками нейтрино от Солнца помогли заглянуть вцентр Солнца и узнать о термоядерном источнике энергии.

• Узнать, как определяют основные характеристики звёзд и ихвзаимосвязь между собой, о внутреннем строении звёзд и источникахих энергии; о необычности свойств звёзд белых карликов, нейтронных

звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.

- Узнать, как по наблюдениям пульсирующих звёзд цефеидопределять расстояния до других галактик, как астрономы понаблюдениям двойных и кратных звёзд определяют их массы.
- Получить представления о взрывах новых и сверхновых звёзд иузнать как в звёздах образуются тяжёлые химические элементы.
- Узнать, как устроена наша Галактика Млечный Путь, какраспределены в ней рассеянные и шаровые звёздные скопления иоблака межзвёздного газа и пыли. Как с помощью наблюдений винфракрасных лучах удалось проникнуть через толщу межзвёздногогаза и пыли в центр Галактики, увидеть движение звёзд в нём вокругсверхмассивной чёрной дыры.

• Получить представление о различных типах галактик, узнать опроявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры их

распределения.

• Узнать о строении и эволюции уникального объекта Вселеннойв целом. Проследить за развитием представлений о конечности ибесконечности Вселенной, о фундаментальных парадоксах, связанных

с ними.

• Понять, как из наблюдаемого красного смещения в спектрахдалёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но и

горячей и, что наблюдаемое реликтовое излучение подтверждает этотважный вывод современной космологии.

- Узнать, как открыли ускоренное расширение Вселенной и егосвязью с тёмной энергией и всемирной силой отталкивания,противостоящей всемирной силе тяготения.
- Узнать об открытии экзопланет планет около других звёзд исовременном состоянии проблемы поиска внеземных цивилизаций исвязи с ними.
- Научиться проводить простейшие астрономическиенаблюдения, ориентироваться среди ярких звёзд и созвездий, измерять высоты звёзд и Солнца, определять астрономическимиметодами время, широту и долготу места наблюдений, измерять диаметр Солнца и измерять солнечную активность и её зависимость от времени.

Формирование универсальных учебных действий.

происходящие в современном обществе, требуют Перемены, ускоренного совершенствования образовательного пространства, определения целей образования, учитывающих государственные, социальные и личностные потребности и интересы. В связи с этим приоритетным направлением становится обеспечение развивающего потенциала образовательных стандартов. Развитие личности в системе образования обеспечивается, прежде всего, через формирование универсальных учебных действий (УУД), которые выступают инвариантной основой образовательного и воспитательного процесса. Овладение учащимися универсальными учебными действиями выступает как способность к саморазвитию и самосовершенствованию путем сознательного и активного присвоения нового социального опыта. УУД создаютвозможность самостоятельного успешного усвоения новых знаний, умений и компетентностей, включая организацию усвоения, то есть умения учиться.

В широком значении термин «универсальные учебные действия» означает умение учиться, т.е. способность субъекта к саморазвитию и самосовершенствованию путем сознательного и активного присвоения нового социального опыта.

В более узком (собственно психологическом значении) термин «универсальные учебные действия» можно определить как совокупность способов действия учащегося (а также связанных с ними навыков учебной работы), обеспечивающих его способность к самостоятельному усвоению новых знаний и умений, включая организацию этого процесса. Универсальные учебные действия (УУД) подразделяются на 4 группы: регулятивные, личностные, коммуникативные и познавательные.

Результатом формирования универсальных учебных действий будут являтьсяумения:

• произвольно и осознанно владеть общим приемом решения учебных задач;

- использовать знаково-символические средства, в том числе модели и схемы для решения учебных задач;
- уметь осуществлять анализ объектов с выделением существенных и несущественных признаков;
 - уметь осуществлять синтез как составление целого из частей;
 - уметь осуществлять сравнение, классификацию по заданным критериям;
 - уметь устанавливать причинно-следственные связи;
- уметь строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;
 - владеть общим приемом решения учебных задач;
 - создавать и преобразовывать модели и схемы для решения задач;
- уметь осуществлять выбор наиболее эффективных способов решения образовательных задач в зависимости от конкретных условий.

Результаты освоения курса астрономии.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к астрономии как к элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи , умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

- знания о природе важнейших астрономических явлений окружающего мира и понимание смысла законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между явлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по астрономии на практике, решать задачи на применение полученных знаний;
- Умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, выводить из экспериментальных фактов и теоретических моделей законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.